
Running LDDTool and Verifying the Output
Command Line Options for LDDTool

Single-letter switches may be combined and order is not significant, so "-l -p -M" is equivalent to "-
Mlp".

Note that the few errors in command invocation that are actually trapped will send error messages to
the command line, but these will always be followed by a dump of usage information, so most people
will have to be able to scroll back through screen output to see the actual error message.

Also, note that LDDTool will silently ignore invalid switches, so type carefully.

Command Switches to Use
These switches seem to operate as described below. Some have both a short form and a long form.

The minimal "Operation" documentation provided with the LDDTool package is apparently
unmaintained, is at odds with actual tool behavior in more than a few cases, and is flat-out wrong
in at least one key point. The information output as help text for LDDTool is not much better. The
information below was compiled by running LDDTool with various options and looking at the
results produced using LDDTool version 7.0.1 of the release package (version 0.2.1.0 of the tool
itself). The documentation remains unchanged in the latest release.

-l Required
This switch must always be specified if you want to actually process the
input file. Failing to include results in an output list of errors complaining
about things that can't be found and nothing else.

-p Required
This switch must always be specified if you want to actually process the
input file. Omitting results in a a brief error message identifying the
missing option followed by a listing of the help text.

-c Optional

This switch directs LDDTool to create XML <element> definitions for
every DD_Class declaration in the Ingest_LDD input, ignoring
any <element_flag> attributes you might have included in
your DD_Class definitions. This is probably not a good idea. Don't do
this unless you really mean it.

-h, --
help Optional

This displays the command summary information. In this case all other
switches and arguments are ignored. The long form of the switch is safe
to use in this case because the -h option overrides and cancels all other
options.

-J Optional

This switch causes the creation of an additional output file that contains
the dictionary information in JSON (Java Script Open Notation) format.
It is a dump of the entire Information Model as known to LDDTool after
processing your input file - so it includes the entire pds: core
namespace, the known discipline name spaces, and the dictionary just
created.

Command Switches to Avoid

-m Optional

This switch causes LDDTool to create an additional output file with the
same name as the output schema files and an extension of ".pont". This
file is used to load the ontological data base at Engineering Node that
holds all configured PDS4 data dictionaries. You should never have to
generate this file in normal operations, but if you can find a use for it,
have at it.

-M Optional

This switch adds a /mission/ level to the namespace identifier defined for
your dictionary. If you are working on a mission dictionary, you should
use this switch to avoid having to edit the namespace in the output
schema files.

-n Optional

This switch adds "nuance property maps" to the output schema and, if
any, JSON files. This is an experimental implementation still working
towards proof-of-concept stage, so you should avoid it unless you are
directly involved in the testing and development of this capability.

-s Optional

This switch causes the version number of the local dictionary to be set
equal to the version number of the core namespace used to process the
input file, and it also causes the output files to have names of the
form PDS4_ns_vvvv, where ns is the namespace abbreviation specified
inside the input file, and vvvv is the collapsed, four-digit reference to the
PDS core version. Apart from the version number, the output schemas
are otherwise unaffected.

-v, --
version Optional

This switch causes LDDTool to output its internal version number, which
is different from the version number on the delivery package. As of this
writing, the latest available download package has a version number of
"7.0.1", but the -v option will report a version number of "0.2.1.0". The
long option is also safe to use in this case - the -v option overrides all
other options except the -h option.

-1 Optional

This switch (it's a number one) causes the output of the PDS4
Information Model in the same format as the HTML web page on the
main PDS site. It will include attribute definitions from your local
dictionary in "Section 26", but it will not include your class definitions -
even if you include the -c option to create visible class elements, or set
the element_flag in your class to true. Neither do the associated links
work. On the whole, there's not much point, but the switch does not
appear to have any side-effects on the output schemas themselves, so
in that sense it is harmless.

Do Not Use These Options. If you read the help text output by LDDTool, you will see these
switches listed, but they do not have the advertised effect(s), and frequently have unintended side
effects because of a program error in handling long-form options.

-a This switch has no effect.

--
attribute

This switch has no effect. It is defined as a synonym for the -a switch, which has no
effect, and it also, coincidentally, has no letters in it that would otherwise be recognized
as switches.

--class
This switch is supposed to be an alias for the -c switch. While it does cause element
definitions to be written for classes, it also changes the name of the output files as
though the -s switch was included as well.

-d

This undocumented switch causes LDDTool to insert <xs:annotation> elements into the
output XML Schema for every attribute included in each class. These elements contain
the human-readable definitions you included in the input file as you defined each
attribute. Normally, the output XSD schema file only contains these annotations for the
classes. Using this switch causes them to be added for attributes as well. It does not,
however, do this in a way that is consistently syntactically valid - so a non-trivial input file
is likely to produce an .xsd output file that is riddled with content errors.

-IM
Spec

Assuming you are clever enough to figure out how to pass an option with an imbedded
blank, this is advertised as a long form of the -1 option. It is not. It does not trigger
creation of the HTML file, but it does have the same effect as specifying the -M and -
c options.

--
JASON

This was supposed to be an alternate way of including the -J switch. It actually does
also trigger the creation of the JSON output file, but this is not how you spell "JSON",
and one must assume that it is only the happy circumstance that none of its letters
correspond to currently existing other switches that prevents this string from having
unexpected side effects similar to those listed for other long versions.

--LDD
This is supposed to be an alternate way of including the required -l switch. It is not, and
using it throws an error.

--merge

As of this writing, this option has the desired effect of being equivalent to the -m option
with no additional side-effects. Given the issues with other long options, though, this
must be assumed to be a happy coincidence, and it would be better in the long run to
avoid all long options, even the ones that seem to work, until the underlying problem is
solved.

--
Mission

This was supposed to be an alternate way of including the -M switch. It does produce
the desired change in namespace, but also produces the addition effects of the -s and -
n switches.

--
nuance

This was supposed to be an alternate way of including the -n switch, which you also
probably should not use, but in addition to adding the property maps to the output, it
also causes the same behavior as the -c switch, and defines elements for all your
classes.

--PDS4
This is supposed to be an alternate way of including the required -p switch. It is not, and
using it throws an error.

--sync
This was supposed to be an alternate way of including the -s switch. In fact, it has the
total effect of the -s, -n, and -c switches combined.

Running LDDTool

The simplest invocation of LDDTool that a mission dictionary creator should use, and will likely most
often use, looks like this:
lddtool -lpM IngestLDD_Example_Classes.xml

If you are creating a discipline dictionary rather than a mission dictionary, omit the "M"; otherwise
make sure you capitalize it (-m means something else).

If all goes well, this will send about 40 lines of informational output to your screen (you can redirect it
to a file if you like using the usual technique for your operating system). Most of the lines will begin
with >>info and list various settings and files referenced by LDDTool. Towards the bottom you will
see these statements:

 WARNING Header: - New steward has been specified:sbn
 WARNING Header: - New namespace id has been specified:ex

This is normal. The "new steward" will be the value you supplied for the <steward_id> attribute in
your input file, and the "new namespace id" will the value of <namespace_id>.

You will also see various counts for things like attributes and classes. These numbers will likely
seems extraordinarily high to you, but they include all the classes and attributes in the entire PDS4
Information Model (which is the context in which LDDTool works). As you add your own classes and
attributes, you will see these numbers go up - but they will never be small integers.

If there are errors encountered, they will likely be reported near the "WARNING" lines, and similarly
labeled with "ERROR" or "WARNING". If your input file was syntactically and schematically valid
(and you did validate your input file before running LDDTool, didn't you?) then the most likely cause
for errors here will be typographic - mistyping the name of a class, or using the <name> attribute
value rather than the <local_identifier> value in a <DD_Association> reference.

Use other options as you want or need to, of course. You can rename the output files before
referencing them in labels, if desired, but in a production environment you might find the -s option
useful to ensure uniformity in naming. And the -J option could be useful if you are working with
developers who need JSON support for your dictionary.

Validate That Output!
It is extremely important that you verify that your output schemas are actually valid.

The LDDTool processing cannot detect syntax errors that are specific for the XSD or Schematron
environment, and if you accidentally typed the wrong input option you may have invalid output
related to that. These situations will not be flagged as either errors or warnings in the output listing.

Whatever tool you use to validate PDS4 labels will work for the schemas - so a validating editor or
command line tool will do the job. Generally, syntax errors here can and should be corrected in the
input file and the schemas regenerated until you get a valid output set. If you encounter a validation
failure that cannot be resolved by correcting the input, please contact your PDS consultant as soon
as possible with the details and a copy of the file(s) that produced the failure.

It is also a good idea to open the XSD schema file, at least, in an editor so you can examine its
structure and make sure it corresponds to what you were expecting. An XML-aware editor, for

For the following discussions, we'll use the "IngestLDD_Example_Classes.xml" input file included
in the example file (File:LDDTool 1900 examples.zip for IM version 1.9.0.0) set as our model. Of
course, you would replace this with your own dictionary input file name in practice.

https://pds.nasa.gov/datastandards/training/documents/LDDTool_1900_examples.zip

example, can probably tell you at a glance if you have the right number of "element" definitions
(preferably one) in your schema.

The Other Output Files
Running LDDTool also produces files in addition to the schema files that are the primary output.
Here's a brief summary by file extension (the files will all have the same name as the output
schemas):

.csv
This file contains a CSV (comma separated values) table with a summary of the dictionary contents.
It does include a column with the description you provided in the input file for all classes and
attributes, so you may find this file useful in preparing a human-readable version of the dictionary for
reviewers to peruse.
.JSON
This is JSON for the entire PDS4 information model as known to LDDTool, and including the new
dictionary contents just defined. This file would be on order of 60,000 lines (2.5MB) even before
adding any of the new dictionary content.
.txt
This file is the LDDTool processing log. You might find helpful information in here if you
had WARNING or ERROR flags in your output listing.
.xml
This is a PDS4 product label file for the schema set just created. You could use this as a basis for a
label for the schemas, but it will almost certainly require additional editing for documentation, or for
updating filenames if you decide to change the schema file names post-production. This label
considers the pair of schemas as a single product.

Editing the Output Files
In general, you should correct the input file or use different LDDTool command line options rather
than editing the output schemas directly. But there are some cases where direct editing of the output
might be in order.

Adding Schematron Rules
If the <DD_Rule> class cannot create the Schematron statements you need to perform a specific
type of necessary validation, you may have to add them manually. Even if you are a Schematron
shaman, do not do this as an alternative to using <DD_Rule> when <DD_Rule> can do the job,
because manual editing of the schema files after generation is a potential giant opportunity for failure
in maintenance as the archive ages. If you do have to add things manually to the Schematron file,
please document what you added and why either in a separate text file that you add to the XML
product (that is, modify the output label to point to this new file). This will minimize the risk of the
documentation being lost or inadvertently destroyed.
Complex namespace relationships
If you are working on a very big and very complex mission, and have actually agreed with your lead
PDS node that you need to further subdivide your mission namespace into several smaller
namespaces, then you may need to manually edit the namespace identifiers in your schemas to add
a level below the /mission/ level. There are references to the namespace being defined near the top
of both the .xsd and .sch files that will need to be modified. Do not do this without approval from your
PDS lead node.
Changing File Names

If you decide to change the names of the output schema files from what was generated by LDDTool,
you will need to edit the output label file to reflect the new names. In this case no changes are
needed in the schema files or in the JSON file, if one was created.

Testing the Schemas

Testing is critical, and can be particularly tricky with Schematron files involved. You should design
one or more labels specifically to check that each validation condition you coded into your input file
is being properly checked and flagged. This is not as simple as just making sure that a label that was
previously valid is still valid. Consider the case of an attribute that must have one of three
permissible values. Here are the cases that should be checked before considering the associated
schemas valid:
• If the attribute is required and is not present, an error must be reported.
• If the attribute is present and has a permissible value, no error should be reported.
• If the attribute is present and has a value that is not permissible, an error should be reported.
• If the attribute is optional and is not present, no error should be reported.

It is annoyingly easy, for example, to write a Schematron rule to constrain the value of an optional
attribute that will report an error if the attribute is not present - thus effectively requiring the presence
of an attribute that you had intended to be optional. Schematron rules added to enforce complex
relationships between attributes and classes are prime candidates for unintended consequences like
this.

It is even easier to introduce a typographical error into a permissible value that will go unnoticed
indefinitely if not detected in testing.

And it is practically guaranteed that if you make regular use of the <DD_Rule> class in your input
file, that at some point you will mistype something in a <rule_context> attribute that will prevent that
Schematron rule from ever firing. Unless you specifically test for the error that rule should be
flagging, you will never know there is a problem. It is not an error to have a non-existent context (or
attribute) referenced in your Schematron file.

If you create your test labels in parallel as you develop your dictionary, the task will seem far less
onerous, as well as providing some useful experience using the dictionary you are creating.

It is extremely important that you test your schemas with one or more labels specifically designed
to exercise each and every validation condition you created.

